生成符合问答场景的问答对
This commit is contained in:
@@ -154,7 +154,7 @@ class QAConfig:
|
||||
|
||||
# ========== 输出控制 ==========
|
||||
# 是否打乱问答对顺序
|
||||
self.SHUFFLE_OUTPUT = True
|
||||
self.SHUFFLE_OUTPUT = False
|
||||
|
||||
# 是否生成QA生成报告
|
||||
self.GENERATE_REPORT = True
|
||||
|
||||
451
qa_generator.py
451
qa_generator.py
@@ -54,6 +54,54 @@ class QAGenerator:
|
||||
"。"
|
||||
]
|
||||
|
||||
# 验证集专用模板(正式但有别于训练集)
|
||||
self.VERIFICATION_QUESTION_PREFIXES = [
|
||||
"请问",
|
||||
"想咨询一下",
|
||||
"请问您",
|
||||
"我想了解一下",
|
||||
"请教一下",
|
||||
"您好,",
|
||||
"能否告诉我",
|
||||
"请问如何",
|
||||
"我想咨询",
|
||||
"希望了解"
|
||||
]
|
||||
|
||||
self.VERIFICATION_ANSWER_PREFIXES = [
|
||||
"根据查询,",
|
||||
"经查询,",
|
||||
"查询结果显示,",
|
||||
"根据记录,",
|
||||
"数据表明,",
|
||||
"经系统查询,",
|
||||
"根据数据,",
|
||||
"查询结果:",
|
||||
"经核实,",
|
||||
"数据显示,"
|
||||
]
|
||||
|
||||
self.VERIFICATION_ANSWER_SUFFIXES = [
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。",
|
||||
"。"
|
||||
]
|
||||
|
||||
# 模型数据缓存
|
||||
self.model_data_cache = {
|
||||
"逻辑模型_逻辑模型中文名": {},
|
||||
"逻辑模型_逻辑模型英文名": {},
|
||||
"物理模型_物理模型中文名": {},
|
||||
"物理模型_物理模型英文名": {}
|
||||
}
|
||||
|
||||
def get_random_element(self, elements: List[str]) -> str:
|
||||
"""从列表中随机获取一个元素"""
|
||||
return random.choice(elements) if elements else ""
|
||||
@@ -188,18 +236,365 @@ class QAGenerator:
|
||||
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# ==================== 新增:根据中文字段名询问完整定义 ====================
|
||||
if field_chinese_name:
|
||||
question = f"字段中文名为'{field_chinese_name}'的定义是什么?"
|
||||
# 构建完整的定义信息
|
||||
definition_parts = []
|
||||
for key, value in item.items():
|
||||
if key not in ['字段中文名'] and value is not None:
|
||||
definition_parts.append(f"{key}:{value}")
|
||||
elif key not in ['字段中文名'] and value is None:
|
||||
definition_parts.append(f"{key}:null")
|
||||
|
||||
definition_text = ", ".join(definition_parts)
|
||||
answer = f"{field_chinese_name}的定义为:{definition_text}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# ==================== 新增:根据英文字段名询问完整定义 ====================
|
||||
if field_english_name:
|
||||
question = f"字段英文名为'{field_english_name}'的定义是什么?"
|
||||
# 构建完整的定义信息
|
||||
definition_parts = []
|
||||
for key, value in item.items():
|
||||
if key not in ['字段英文名'] and value is not None:
|
||||
definition_parts.append(f"{key}:{value}")
|
||||
elif key not in ['字段英文名'] and value is None:
|
||||
definition_parts.append(f"{key}:null")
|
||||
|
||||
definition_text = ", ".join(definition_parts)
|
||||
answer = f"{field_english_name}的定义为:{definition_text}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
return qa_pairs
|
||||
|
||||
def generate_verification_qa_for_item(self, item: Dict) -> List[Dict]:
|
||||
"""为单个数据项生成验证集问答对(正式但有别于训练集的表达)"""
|
||||
qa_pairs = []
|
||||
|
||||
# 获取两个核心字段
|
||||
field_chinese_name = item.get('字段中文名', '')
|
||||
field_english_name = item.get('字段英文名', '')
|
||||
|
||||
# 基于字段中文名提问(正式但有变化)
|
||||
if field_chinese_name:
|
||||
# 询问值类型
|
||||
if item.get('值类型'):
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段的数据类型是什么?"
|
||||
answer = f"数据类型是「{item['值类型']}」"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问是否枚举
|
||||
if item.get('是否枚举'):
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段是否为枚举类型?"
|
||||
answer = f"枚举类型为「{item['是否枚举']}」"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问枚举数量
|
||||
if item.get('枚举数量') is not None:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段的枚举数量是多少?"
|
||||
answer = f"枚举数量为{item['枚举数量']}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问总长度
|
||||
if item.get('总长度') is not None:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段的总长度是多少?"
|
||||
answer = f"总长度为{item['总长度']}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问小数位
|
||||
if item.get('小数位') is not None:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段的小数位是多少?"
|
||||
answer = f"小数位为{item['小数位']}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问字段英文名
|
||||
if field_english_name:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段对应的英文名是什么?"
|
||||
answer = f"英文名为「{field_english_name}」"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 基于字段英文名提问(正式但有变化)
|
||||
if field_english_name:
|
||||
# 询问值类型
|
||||
if item.get('值类型'):
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_english_name}'字段的数据类型是什么?"
|
||||
answer = f"数据类型是「{item['值类型']}」"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问是否枚举
|
||||
if item.get('是否枚举'):
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_english_name}'字段是否为枚举类型?"
|
||||
answer = f"枚举类型为「{item['是否枚举']}」"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问总长度
|
||||
if item.get('总长度') is not None:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_english_name}'字段的总长度是多少?"
|
||||
answer = f"总长度为{item['总长度']}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问小数位
|
||||
if item.get('小数位') is not None:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_english_name}'字段的小数位是多少?"
|
||||
answer = f"小数位为{item['小数位']}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# 询问字段中文名
|
||||
if field_chinese_name:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_english_name}'字段对应的中文名是什么?"
|
||||
answer = f"中文名为「{field_chinese_name}」"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# ==================== 验证集:根据中文字段名询问完整定义 ====================
|
||||
if field_chinese_name:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_chinese_name}'字段的具体定义是什么?"
|
||||
# 构建完整的定义信息
|
||||
definition_parts = []
|
||||
for key, value in item.items():
|
||||
if key not in ['字段中文名'] and value is not None:
|
||||
definition_parts.append(f"{key}:{value}")
|
||||
elif key not in ['字段中文名'] and value is None:
|
||||
definition_parts.append(f"{key}:null")
|
||||
|
||||
definition_text = ", ".join(definition_parts)
|
||||
answer = f"{field_chinese_name}的定义为:{definition_text}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
# ==================== 验证集:根据英文字段名询问完整定义 ====================
|
||||
if field_english_name:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}'{field_english_name}'字段的具体定义是什么?"
|
||||
# 构建完整的定义信息
|
||||
definition_parts = []
|
||||
for key, value in item.items():
|
||||
if key not in ['字段英文名'] and value is not None:
|
||||
definition_parts.append(f"{key}:{value}")
|
||||
elif key not in ['字段英文名'] and value is None:
|
||||
definition_parts.append(f"{key}:null")
|
||||
|
||||
definition_text = ", ".join(definition_parts)
|
||||
answer = f"{field_english_name}的定义为:{definition_text}"
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
return qa_pairs
|
||||
|
||||
def generate_qa_for_data(self, data: List[Dict]) -> List[Dict]:
|
||||
"""为所有数据生成QA"""
|
||||
all_qa = []
|
||||
|
||||
# 首先收集模型数据
|
||||
self.collect_model_data(data)
|
||||
|
||||
for item in data:
|
||||
qa_pairs = self.generate_qa_for_item(item)
|
||||
all_qa.extend(qa_pairs)
|
||||
|
||||
# 生成基于模型的问题
|
||||
model_qa_pairs = self.generate_model_based_qa(data)
|
||||
all_qa.extend(model_qa_pairs)
|
||||
|
||||
return all_qa
|
||||
|
||||
def generate_verification_qa_for_data(self, data: List[Dict]) -> List[Dict]:
|
||||
"""为所有数据生成验证集QA(口语化、拟人化表达)"""
|
||||
all_qa = []
|
||||
|
||||
# 首先收集模型数据
|
||||
self.collect_model_data(data)
|
||||
|
||||
for item in data:
|
||||
qa_pairs = self.generate_verification_qa_for_item(item)
|
||||
all_qa.extend(qa_pairs)
|
||||
|
||||
# 生成基于模型的问题(验证集版)
|
||||
model_qa_pairs = self.generate_verification_model_based_qa(data)
|
||||
all_qa.extend(model_qa_pairs)
|
||||
|
||||
return all_qa
|
||||
|
||||
def collect_model_data(self, data: List[Dict]):
|
||||
"""收集模型相关数据用于后续查询"""
|
||||
for item in data:
|
||||
# 收集逻辑模型数据
|
||||
if "逻辑模型_逻辑模型中文名" in item and item["逻辑模型_逻辑模型中文名"]:
|
||||
model_name = item["逻辑模型_逻辑模型中文名"]
|
||||
if model_name not in self.model_data_cache["逻辑模型_逻辑模型中文名"]:
|
||||
self.model_data_cache["逻辑模型_逻辑模型中文名"][model_name] = []
|
||||
self.model_data_cache["逻辑模型_逻辑模型中文名"][model_name].append(item.get("字段中文名", ""))
|
||||
|
||||
if "逻辑模型_逻辑模型英文名" in item and item["逻辑模型_逻辑模型英文名"]:
|
||||
model_name = item["逻辑模型_逻辑模型英文名"]
|
||||
if model_name not in self.model_data_cache["逻辑模型_逻辑模型英文名"]:
|
||||
self.model_data_cache["逻辑模型_逻辑模型英文名"][model_name] = []
|
||||
self.model_data_cache["逻辑模型_逻辑模型英文名"][model_name].append(item.get("字段中文名", ""))
|
||||
|
||||
# 收集物理模型数据
|
||||
if "物理模型_物理模型中文名" in item and item["物理模型_物理模型中文名"]:
|
||||
model_name = item["物理模型_物理模型中文名"]
|
||||
if model_name not in self.model_data_cache["物理模型_物理模型中文名"]:
|
||||
self.model_data_cache["物理模型_物理模型中文名"][model_name] = []
|
||||
self.model_data_cache["物理模型_物理模型中文名"][model_name].append(item.get("字段中文名", ""))
|
||||
|
||||
if "物理模型_物理模型英文名" in item and item["物理模型_物理模型英文名"]:
|
||||
model_name = item["物理模型_物理模型英文名"]
|
||||
if model_name not in self.model_data_cache["物理模型_物理模型英文名"]:
|
||||
self.model_data_cache["物理模型_物理模型英文名"][model_name] = []
|
||||
self.model_data_cache["物理模型_物理模型英文名"][model_name].append(item.get("字段中文名", ""))
|
||||
|
||||
def generate_model_based_qa(self, data: List[Dict]) -> List[Dict]:
|
||||
"""生成基于模型的问题(优化版:只对有足够字段的模型生成问题)"""
|
||||
qa_pairs = []
|
||||
|
||||
# 为每个模型类型生成问题
|
||||
for model_type, model_dict in self.model_data_cache.items():
|
||||
for model_name, field_names in model_dict.items():
|
||||
# 去重字段名
|
||||
unique_field_names = list(set(field_names))
|
||||
# 过滤掉空值
|
||||
unique_field_names = [name for name in unique_field_names if name and name.strip()]
|
||||
|
||||
# 优化:只对有3个或更多字段的模型生成问题,避免问题过多
|
||||
if len(unique_field_names) < 3:
|
||||
continue
|
||||
|
||||
# 根据模型类型生成不同的问题
|
||||
if "逻辑模型" in model_type:
|
||||
if "中文名" in model_type:
|
||||
question = f"逻辑模型中文名为'{model_name}'的元素有哪些?"
|
||||
answer_prefix = f"{model_name}对应的元素有:"
|
||||
else:
|
||||
question = f"逻辑模型英文名为'{model_name}'的元素有哪些?"
|
||||
answer_prefix = f"逻辑模型'{model_name}'对应的元素有:"
|
||||
else: # 物理模型
|
||||
if "中文名" in model_type:
|
||||
question = f"物理模型中文名为'{model_name}'的元素有哪些?"
|
||||
answer_prefix = f"{model_name}对应的元素有:"
|
||||
else:
|
||||
question = f"物理模型英文名为'{model_name}'的元素有哪些?"
|
||||
answer_prefix = f"物理模型'{model_name}'对应的元素有:"
|
||||
|
||||
# 构建答案
|
||||
field_list = "、".join(unique_field_names[:10]) # 限制最多10个字段
|
||||
if len(unique_field_names) > 10:
|
||||
field_list += f"等{len(unique_field_names)}个字段"
|
||||
|
||||
answer = f"{answer_prefix}{field_list}"
|
||||
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
return qa_pairs
|
||||
|
||||
def generate_verification_model_based_qa(self, data: List[Dict]) -> List[Dict]:
|
||||
"""生成基于模型的问题(验证集版:正式但有别于训练集)"""
|
||||
qa_pairs = []
|
||||
|
||||
# 为每个模型类型生成问题
|
||||
for model_type, model_dict in self.model_data_cache.items():
|
||||
for model_name, field_names in model_dict.items():
|
||||
# 去重字段名
|
||||
unique_field_names = list(set(field_names))
|
||||
# 过滤掉空值
|
||||
unique_field_names = [name for name in unique_field_names if name and name.strip()]
|
||||
|
||||
# 优化:只对有3个或更多字段的模型生成问题,避免问题过多
|
||||
if len(unique_field_names) < 3:
|
||||
continue
|
||||
|
||||
# 根据模型类型生成不同的问题(正式但有变化)
|
||||
if "逻辑模型" in model_type:
|
||||
if "中文名" in model_type:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}逻辑模型'{model_name}'包含哪些字段?"
|
||||
answer_prefix = f"{model_name}包含的字段有:"
|
||||
else:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}逻辑模型'{model_name}'包含哪些字段?"
|
||||
answer_prefix = f"逻辑模型'{model_name}'包含的字段有:"
|
||||
else: # 物理模型
|
||||
if "中文名" in model_type:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}物理模型'{model_name}'包含哪些字段?"
|
||||
answer_prefix = f"{model_name}包含的字段有:"
|
||||
else:
|
||||
question = f"{self.get_random_element(self.VERIFICATION_QUESTION_PREFIXES)}物理模型'{model_name}'包含哪些字段?"
|
||||
answer_prefix = f"物理模型'{model_name}'包含的字段有:"
|
||||
|
||||
# 构建答案
|
||||
field_list = "、".join(unique_field_names[:10]) # 限制最多10个字段
|
||||
if len(unique_field_names) > 10:
|
||||
field_list += f"等{len(unique_field_names)}个字段"
|
||||
|
||||
answer = f"{answer_prefix}{field_list}"
|
||||
|
||||
qa_pairs.append({
|
||||
"instruct": question,
|
||||
"input": "",
|
||||
"output": f"{self.get_random_element(self.VERIFICATION_ANSWER_PREFIXES)}{answer}{self.get_random_element(self.VERIFICATION_ANSWER_SUFFIXES)}"
|
||||
})
|
||||
|
||||
return qa_pairs
|
||||
|
||||
def shuffle_qa_pairs(self, qa_pairs: List[Dict]) -> List[Dict]:
|
||||
"""随机打乱问答对顺序"""
|
||||
if self.config.SHUFFLE_OUTPUT:
|
||||
@@ -225,7 +620,7 @@ class QAGenerator:
|
||||
"输出目录": self.config.OUTPUT_DIR,
|
||||
"随机种子": self.config.RANDOM_SEED,
|
||||
"总问答对数量": total_qa_count,
|
||||
"说明": "基于字段中文名、字段英文名、抽象中文名询问其他所有字段"
|
||||
"说明": "基于字段中文名、字段英文名询问其他字段,新增:根据中文字段名/英文字段名询问完整定义,新增:根据逻辑模型/物理模型查询对应元素(仅对字段数>=3的模型生成)"
|
||||
}
|
||||
|
||||
report_path = os.path.join(self.config.OUTPUT_DIR, "QA生成报告.json")
|
||||
@@ -234,7 +629,7 @@ class QAGenerator:
|
||||
|
||||
print(f"[OK] 已生成: {report_path}")
|
||||
|
||||
def process_selected_json(self):
|
||||
def process_selected_json(self, generate_verification: bool = False):
|
||||
"""处理selected.json文件"""
|
||||
input_file = os.path.join(self.config.INPUT_DIR, "selected.json")
|
||||
|
||||
@@ -243,7 +638,10 @@ class QAGenerator:
|
||||
return
|
||||
|
||||
print("="*60)
|
||||
print("QA生成器 - 简化版")
|
||||
if generate_verification:
|
||||
print("QA生成器 - 验证集版(正式化表达但有别于训练集)")
|
||||
else:
|
||||
print("QA生成器 - 简化版")
|
||||
print("="*60)
|
||||
print(f"\n[INFO] 加载数据: {input_file}")
|
||||
|
||||
@@ -252,17 +650,25 @@ class QAGenerator:
|
||||
print(f" 数据记录: {len(data)} 条")
|
||||
|
||||
print(f"\n[INFO] 生成问答对...")
|
||||
qa_pairs = self.generate_qa_for_data(data)
|
||||
if generate_verification:
|
||||
qa_pairs = self.generate_verification_qa_for_data(data)
|
||||
output_filename = "selected_QA_Verification.json"
|
||||
else:
|
||||
qa_pairs = self.generate_qa_for_data(data)
|
||||
output_filename = "selected_QA.json"
|
||||
print(f" 生成数量: {len(qa_pairs)} 条")
|
||||
|
||||
print(f"\n[INFO] 打乱顺序...")
|
||||
qa_pairs = self.shuffle_qa_pairs(qa_pairs)
|
||||
|
||||
print(f"\n[INFO] 保存文件...")
|
||||
self.save_qa(qa_pairs, "selected_QA.json")
|
||||
self.save_qa(qa_pairs, output_filename)
|
||||
|
||||
print(f"\n[INFO] 生成报告...")
|
||||
self.generate_report(len(qa_pairs))
|
||||
if generate_verification:
|
||||
self.generate_verification_report(len(qa_pairs))
|
||||
else:
|
||||
self.generate_report(len(qa_pairs))
|
||||
|
||||
print(f"\n[DONE] 处理完成!")
|
||||
print(f"[OUT] 输出目录: {self.config.OUTPUT_DIR}")
|
||||
@@ -273,15 +679,44 @@ class QAGenerator:
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
def generate_verification_report(self, total_qa_count: int):
|
||||
"""生成验证集生成报告"""
|
||||
report = {
|
||||
"生成时间": "2025-12-31",
|
||||
"版本": "验证集版",
|
||||
"输入文件": "selected.json",
|
||||
"输出目录": self.config.OUTPUT_DIR,
|
||||
"随机种子": self.config.RANDOM_SEED,
|
||||
"总问答对数量": total_qa_count,
|
||||
"说明": "验证集:基于字段中文名、字段英文名询问其他字段,正式化表达但有别于训练集,新增:根据中文字段名/英文字段名询问完整定义,新增:根据逻辑模型/物理模型查询对应元素(仅对字段数>=3的模型生成)"
|
||||
}
|
||||
|
||||
report_path = os.path.join(self.config.OUTPUT_DIR, "QA生成报告_验证集.json")
|
||||
with open(report_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(report, f, ensure_ascii=False, indent=2)
|
||||
|
||||
print(f"[OK] 已生成: {report_path}")
|
||||
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
# 使用默认配置
|
||||
config = QAConfig()
|
||||
|
||||
# 创建生成器并处理
|
||||
# 创建生成器
|
||||
generator = QAGenerator(config)
|
||||
generator.process_selected_json()
|
||||
|
||||
# 生成训练集
|
||||
print("\n" + "="*60)
|
||||
print("开始生成训练集")
|
||||
print("="*60)
|
||||
generator.process_selected_json(generate_verification=False)
|
||||
|
||||
# 生成验证集
|
||||
print("\n" + "="*60)
|
||||
print("开始生成验证集")
|
||||
print("="*60)
|
||||
generator.process_selected_json(generate_verification=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user