first update

This commit is contained in:
2025-12-18 16:16:12 +08:00
parent beb66415c9
commit 9f33e0b396
6 changed files with 2016 additions and 2 deletions

385
change_xlsx2json.py Normal file
View File

@@ -0,0 +1,385 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Excel转JSON一体化工具
功能读取Excel文件 -> 转换为CSV -> 转换为JSON
支持多种Excel读取方式自动处理复杂格式
"""
import pandas as pd
import json
import os
import glob
import subprocess
import xlwings as xw
from datetime import datetime
from typing import Optional, Dict, List, Tuple
class ExcelToJsonConverter:
"""Excel转JSON转换器"""
def __init__(self, input_dir: str, output_dir: str):
"""
初始化转换器
Args:
input_dir: Excel文件输入目录
output_dir: JSON文件输出目录
"""
self.input_dir = input_dir
self.output_dir = output_dir
# 确保输出目录存在
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# CSV临时目录
self.temp_csv_dir = os.path.join(output_dir, "temp_csv")
if not os.path.exists(self.temp_csv_dir):
os.makedirs(self.temp_csv_dir)
def find_excel_files(self) -> List[Tuple[str, str]]:
"""扫描目录下的所有Excel文件"""
excel_files = []
search_pattern = os.path.join(self.input_dir, "*.xlsx")
for excel_path in glob.glob(search_pattern):
filename = os.path.basename(excel_path)
# 跳过临时文件Excel的临时文件以~$开头)
if filename.startswith('~$'):
print(f"[SKIP] 跳过临时文件: {filename}")
continue
# 生成基础文件名(不含扩展名)
base_name = filename.replace('.xlsx', '')
excel_files.append((excel_path, base_name))
return excel_files
def read_excel_with_xlwings(self, excel_path: str) -> Optional[pd.DataFrame]:
"""使用xlwings读取Excel文件"""
try:
print(f" [TRY] 使用xlwings读取...")
app = xw.App(visible=False)
wb = app.books.open(excel_path)
sheet = wb.sheets[0]
# 读取数据
data = sheet.range('A1').expand().value
wb.close()
app.quit()
# 转换为DataFrame
if data and len(data) > 0:
if isinstance(data[0], list):
# 标准表格格式
headers = data[0]
rows = data[1:] if len(data) > 1 else []
df = pd.DataFrame(rows, columns=headers)
else:
# 每行只有一个值的特殊格式
df = pd.DataFrame(data, columns=['内容'])
return df
return None
except ImportError:
print(f" [WARN] xlwings未安装")
return None
except Exception as e:
print(f" [WARN] xlwings读取失败: {str(e)[:100]}")
return None
def read_excel_with_libreoffice(self, excel_path: str) -> Optional[pd.DataFrame]:
"""使用LibreOffice转换后读取"""
try:
print(f" [TRY] 使用LibreOffice转换...")
# 输出CSV路径
csv_path = excel_path.replace('.xlsx', '_temp.csv')
# 使用LibreOffice转换
cmd = [
'libreoffice',
'--headless',
'--convert-to', 'csv',
'--outdir', os.path.dirname(excel_path),
excel_path
]
result = subprocess.run(cmd, capture_output=True, text=True, timeout=30)
if os.path.exists(csv_path):
df = pd.read_csv(csv_path, encoding='utf-8')
# 删除临时文件
os.remove(csv_path)
print(f" [OK] LibreOffice转换成功")
return df
else:
print(f" [WARN] LibreOffice转换失败")
return None
except FileNotFoundError:
print(f" [WARN] LibreOffice未安装")
return None
except subprocess.TimeoutExpired:
print(f" [WARN] LibreOffice转换超时")
return None
except Exception as e:
print(f" [WARN] LibreOffice转换失败: {e}")
return None
def read_excel_with_pandas(self, excel_path: str) -> Optional[pd.DataFrame]:
"""使用pandas读取Excel文件"""
engines = ['openpyxl', 'xlrd']
for engine in engines:
try:
print(f" [TRY] 使用pandas ({engine})读取...")
df = pd.read_excel(excel_path, engine=engine)
print(f" [OK] pandas ({engine}) 读取成功")
return df
except Exception as e:
print(f" [WARN] pandas ({engine}) 失败: {str(e)[:100]}")
continue
return None
def read_excel_file(self, excel_path: str) -> Optional[pd.DataFrame]:
"""
尝试多种方法读取Excel文件
Args:
excel_path: Excel文件路径
Returns:
DataFrame或None
"""
print(f"\n[INFO] 读取文件: {os.path.basename(excel_path)}")
# 按优先级尝试读取方法
methods = [
("xlwings", self.read_excel_with_xlwings),
("pandas-openpyxl", lambda p: self.read_excel_with_pandas(p) if 'openpyxl' in str(p) else None),
("LibreOffice", self.read_excel_with_libreoffice),
("pandas-xlrd", self.read_excel_with_pandas),
]
for method_name, method_func in methods:
try:
if method_name == "pandas-openpyxl":
# 特殊处理pandas-openpyxl
df = self.read_excel_with_pandas(excel_path)
elif method_name == "pandas-xlrd":
# 跳过,因为上面已经尝试过了
continue
else:
df = method_func(excel_path)
if df is not None and not df.empty:
print(f"[OK] {method_name} 成功读取!")
print(f" 数据形状: {df.shape[0]}× {df.shape[1]}")
return df
except Exception as e:
print(f"[WARN] {method_name} 失败: {str(e)[:100]}")
print(f"[ERROR] 所有读取方法都失败了")
return None
def convert_to_csv(self, df: pd.DataFrame, base_name: str) -> str:
"""
将DataFrame转换为CSV
Args:
df: 数据框
base_name: 文件基础名
Returns:
CSV文件路径
"""
csv_filename = f"{base_name}.csv"
csv_path = os.path.join(self.temp_csv_dir, csv_filename)
# 保存为CSV使用utf-8-sig编码支持中文
df.to_csv(csv_path, index=False, encoding='utf-8-sig')
file_size = os.path.getsize(csv_path) / 1024 # KB
print(f" [OK] CSV已生成: {csv_filename} ({file_size:.1f} KB)")
return csv_path
def convert_csv_to_json(self, csv_path: str, base_name: str) -> str:
"""
将CSV文件转换为JSON
Args:
csv_path: CSV文件路径
base_name: 文件基础名
Returns:
JSON文件路径
"""
try:
# 读取CSV文件
df = pd.read_csv(csv_path, encoding='utf-8-sig')
if df.empty:
print(f" [WARN] CSV文件为空")
return ""
# 转换为JSON列表
json_data = []
for index, row in df.iterrows():
# 创建JSON对象
json_obj = {}
for column in df.columns:
value = row[column]
# 处理Na值
if pd.isna(value):
json_obj[column] = None
else:
json_obj[column] = value
# 添加表名字段
json_obj['表名'] = base_name
json_data.append(json_obj)
# 生成JSON文件路径
json_filename = f"{base_name}.json"
json_path = os.path.join(self.output_dir, json_filename)
# 保存JSON文件
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2)
file_size = os.path.getsize(json_path) / 1024 # KB
print(f" [OK] JSON已生成: {json_filename} ({file_size:.1f} KB)")
print(f" 数据量: {len(json_data)} 条记录")
return json_path
except Exception as e:
print(f" [ERROR] CSV转JSON失败: {e}")
import traceback
traceback.print_exc()
return ""
def process_single_file(self, excel_path: str, base_name: str) -> bool:
"""
处理单个Excel文件Excel -> CSV -> JSON
Args:
excel_path: Excel文件路径
base_name: 文件基础名
Returns:
是否成功
"""
print(f"\n{'='*60}")
print(f"处理: {os.path.basename(excel_path)}")
print(f"{'='*60}")
# 步骤1: 读取Excel
df = self.read_excel_file(excel_path)
if df is None:
print(f"[ERROR] 读取失败,跳过此文件")
return False
# 显示数据预览
print(f"\n[INFO] 数据预览:")
print(df.head(3))
# 步骤2: 转换为CSV
csv_path = self.convert_to_csv(df, base_name)
# 步骤3: 转换为JSON
json_path = self.convert_csv_to_json(csv_path, base_name)
if json_path:
print(f"\n[OK] 转换完成!")
return True
else:
print(f"\n[ERROR] 转换失败")
return False
def process_all(self) -> Dict:
"""
处理所有Excel文件
Returns:
处理结果统计
"""
print("="*60)
print("Excel转JSON一体化工具")
print("="*60)
print(f"输入目录: {self.input_dir}")
print(f"输出目录: {self.output_dir}")
# 查找Excel文件
excel_files = self.find_excel_files()
if not excel_files:
print(f"\n[WARN] 未找到任何Excel文件")
return {'total': 0, 'success': 0, 'failed': 0}
print(f"\n[INFO] 发现 {len(excel_files)} 个Excel文件")
# 处理每个文件
success_count = 0
failed_count = 0
results = []
for excel_path, base_name in excel_files:
if self.process_single_file(excel_path, base_name):
success_count += 1
results.append({'file': os.path.basename(excel_path), 'status': 'success'})
else:
failed_count += 1
results.append({'file': os.path.basename(excel_path), 'status': 'failed'})
# 输出统计信息
print(f"\n{'='*60}")
print("转换完成!")
print(f"{'='*60}")
print(f"总计: {len(excel_files)} 个文件")
print(f"成功: {success_count} 个文件")
print(f"失败: {failed_count} 个文件")
# 显示生成的JSON文件
if success_count > 0:
print(f"\n生成的JSON文件:")
json_files = glob.glob(os.path.join(self.output_dir, "*.json"))
for json_file in sorted(json_files):
file_size = os.path.getsize(json_file) / 1024 # KB
filename = os.path.basename(json_file)
print(f" - {filename} ({file_size:.1f} KB)")
return {
'total': len(excel_files),
'success': success_count,
'failed': failed_count,
'results': results
}
def main():
"""主函数 - 演示用法"""
# 配置路径
input_dir = r"d:\Code\Test\Table_Data_Test\Data"
output_dir = r"d:\Code\Test\Table_Data_Test\Data_Export_Json"
# 创建转换器实例
converter = ExcelToJsonConverter(input_dir, output_dir)
# 处理所有文件
result = converter.process_all()
# 输出结果
print(f"\n[INFO] 处理结果: {result}")
if __name__ == "__main__":
main()