1. 修改了问题表达

2. 缩减了表的数量
3. 可以选择生成多少个
This commit is contained in:
2025-12-31 18:15:50 +08:00
parent 9f33e0b396
commit 8088b59d30
5 changed files with 803 additions and 501 deletions

View File

@@ -34,10 +34,8 @@ class ExcelToJsonConverter:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# CSV临时目录
self.temp_csv_dir = os.path.join(output_dir, "temp_csv")
if not os.path.exists(self.temp_csv_dir):
os.makedirs(self.temp_csv_dir)
# CSV临时目录仅在Excel模式下使用
self.temp_csv_dir = None
def find_excel_files(self) -> List[Tuple[str, str]]:
"""扫描目录下的所有Excel文件"""
@@ -198,6 +196,12 @@ class ExcelToJsonConverter:
Returns:
CSV文件路径
"""
# 确保临时CSV目录存在
if self.temp_csv_dir is None:
self.temp_csv_dir = os.path.join(self.output_dir, "temp_csv")
if not os.path.exists(self.temp_csv_dir):
os.makedirs(self.temp_csv_dir)
csv_filename = f"{base_name}.csv"
csv_path = os.path.join(self.temp_csv_dir, csv_filename)
@@ -240,7 +244,19 @@ class ExcelToJsonConverter:
if pd.isna(value):
json_obj[column] = None
else:
json_obj[column] = value
# 处理数据值:如果是字符串且包含英文字母,转换为小写
if isinstance(value, str) and any(c.isalpha() and ord(c) < 128 for c in value):
# 将数据值中的英文字母转换为小写
value = value.lower()
# 将英文字段名转换为小写
# 检查字段名是否完全是英文字符(包括字母、数字、下划线)
if all(ord(c) < 128 for c in column if c.isalnum() or c in '_'):
# 完全是英文字段名,转换为小写
json_obj[column.lower()] = value
else:
# 包含中文字符的字段名保持不变
json_obj[column] = value
# 添加表名字段
json_obj['表名'] = base_name
@@ -364,18 +380,250 @@ class ExcelToJsonConverter:
'results': results
}
def find_csv_files(self, csv_dir: str) -> List[Tuple[str, str]]:
"""扫描目录下的所有CSV文件"""
csv_files = []
search_pattern = os.path.join(csv_dir, "*.csv")
for csv_path in glob.glob(search_pattern):
filename = os.path.basename(csv_path)
# 生成基础文件名(不含扩展名)
base_name = filename.replace('.csv', '')
csv_files.append((csv_path, base_name))
return csv_files
def convert_csv_to_json_direct(self, csv_path: str, base_name: str) -> str:
"""
直接将CSV文件转换为JSON不生成临时CSV
这个方法直接从CSV读取并转换为JSON
Args:
csv_path: CSV文件路径
base_name: 文件基础名
Returns:
JSON文件路径
"""
try:
# 尝试多种编码读取CSV文件
encodings = ['utf-8-sig', 'gb2312', 'gbk', 'utf-8']
df = None
for encoding in encodings:
try:
print(f" [TRY] 尝试编码: {encoding}")
df = pd.read_csv(csv_path, encoding=encoding)
print(f" [OK] 编码 {encoding} 读取成功")
break
except (UnicodeDecodeError, UnicodeError):
print(f" [WARN] 编码 {encoding} 失败")
continue
except Exception as e:
print(f" [WARN] 编码 {encoding} 其他错误: {str(e)[:50]}")
continue
if df is None:
print(f" [ERROR] 所有编码都失败无法读取CSV文件")
return ""
if df.empty:
print(f" [WARN] CSV文件为空")
return ""
# 转换为JSON列表
json_data = []
for index, row in df.iterrows():
# 创建JSON对象
json_obj = {}
for column in df.columns:
value = row[column]
# 处理Na值
if pd.isna(value):
json_obj[column] = None
else:
# 处理数据值:如果是字符串且包含英文字母,转换为小写
if isinstance(value, str) and any(c.isalpha() and ord(c) < 128 for c in value):
# 将数据值中的英文字母转换为小写
value = value.lower()
# 将英文字段名转换为小写
# 检查字段名是否完全是英文字符(包括字母、数字、下划线)
if all(ord(c) < 128 for c in column if c.isalnum() or c in '_'):
# 完全是英文字段名,转换为小写
json_obj[column.lower()] = value
else:
# 包含中文字符的字段名保持不变
json_obj[column] = value
# 添加表名字段
json_obj['表名'] = base_name
json_data.append(json_obj)
# 生成JSON文件路径
json_filename = f"{base_name}.json"
json_path = os.path.join(self.output_dir, json_filename)
# 保存JSON文件
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2)
file_size = os.path.getsize(json_path) / 1024 # KB
print(f" [OK] JSON已生成: {json_filename} ({file_size:.1f} KB)")
print(f" 数据量: {len(json_data)} 条记录")
return json_path
except Exception as e:
print(f" [ERROR] CSV转JSON失败: {e}")
import traceback
traceback.print_exc()
return ""
def process_single_csv(self, csv_path: str, base_name: str) -> bool:
"""
处理单个CSV文件CSV → JSON
Args:
csv_path: CSV文件路径
base_name: 文件基础名
Returns:
是否成功
"""
print(f"\n{'='*60}")
print(f"处理: {os.path.basename(csv_path)}")
print(f"{'='*60}")
# 步骤1: 读取CSV文件并预览
try:
# 尝试多种编码读取CSV文件
encodings = ['utf-8-sig', 'gb2312', 'gbk', 'utf-8']
df = None
for encoding in encodings:
try:
df = pd.read_csv(csv_path, encoding=encoding)
break
except (UnicodeDecodeError, UnicodeError):
continue
except Exception as e:
print(f"[ERROR] 编码 {encoding} 错误: {e}")
continue
if df is None or df.empty:
print(f"[ERROR] CSV文件为空或读取失败")
return False
print(f"\n[INFO] 数据预览:")
print(df.head(3))
print(f"\n[INFO] 数据形状: {df.shape[0]}× {df.shape[1]}")
except Exception as e:
print(f"[ERROR] 读取CSV失败: {e}")
return False
# 步骤2: 转换为JSON
json_path = self.convert_csv_to_json_direct(csv_path, base_name)
if json_path:
print(f"\n[OK] 转换完成!")
return True
else:
print(f"\n[ERROR] 转换失败")
return False
def convert_csv_directory(self, csv_dir: str) -> Dict:
"""
处理CSV目录下的所有CSV文件
Args:
csv_dir: CSV文件目录
Returns:
处理结果统计
"""
print("="*60)
print("CSV转JSON工具")
print("="*60)
print(f"CSV输入目录: {csv_dir}")
print(f"JSON输出目录: {self.output_dir}")
# 查找CSV文件
csv_files = self.find_csv_files(csv_dir)
if not csv_files:
print(f"\n[WARN] 未找到任何CSV文件")
return {'total': 0, 'success': 0, 'failed': 0}
print(f"\n[INFO] 发现 {len(csv_files)} 个CSV文件")
# 处理每个文件
success_count = 0
failed_count = 0
results = []
for csv_path, base_name in csv_files:
if self.process_single_csv(csv_path, base_name):
success_count += 1
results.append({'file': os.path.basename(csv_path), 'status': 'success'})
else:
failed_count += 1
results.append({'file': os.path.basename(csv_path), 'status': 'failed'})
# 输出统计信息
print(f"\n{'='*60}")
print("转换完成!")
print(f"{'='*60}")
print(f"总计: {len(csv_files)} 个文件")
print(f"成功: {success_count} 个文件")
print(f"失败: {failed_count} 个文件")
# 显示生成的JSON文件
if success_count > 0:
print(f"\n生成的JSON文件:")
json_files = glob.glob(os.path.join(self.output_dir, "*.json"))
for json_file in sorted(json_files):
file_size = os.path.getsize(json_file) / 1024 # KB
filename = os.path.basename(json_file)
print(f" - {filename} ({file_size:.1f} KB)")
return {
'total': len(csv_files),
'success': success_count,
'failed': failed_count,
'results': results
}
def main():
"""主函数 - 演示用法"""
# 配置路径
input_dir = r"d:\Code\Test\Table_Data_Test\Data"
output_dir = r"d:\Code\Test\Table_Data_Test\Data_Export_Json"
input_dir = "Data"
csv_input_dir = "Data_Export_CSV"
output_dir = "Data_Export_Json"
# 创建转换器实例
converter = ExcelToJsonConverter(input_dir, output_dir)
# 处理所有文件
result = converter.process_all()
# 优先使用CSV模式
if os.path.exists(csv_input_dir) and os.listdir(csv_input_dir):
# CSV模式使用现有的CSV文件
print(f"\n[INFO] 检测到CSV文件使用CSV模式")
print(f"{csv_input_dir} 读取CSV文件")
result = converter.convert_csv_directory(csv_input_dir)
else:
# Excel模式使用Excel文件备选方案
excel_files = converter.find_excel_files()
if excel_files:
print(f"\n[INFO] 未找到CSV文件使用Excel模式")
print(f"{input_dir} 读取Excel文件")
result = converter.process_all()
else:
print(f"\n[WARN] 未找到CSV文件和Excel文件")
result = {'total': 0, 'success': 0, 'failed': 0}
# 输出结果
print(f"\n[INFO] 处理结果: {result}")

View File

@@ -20,6 +20,10 @@ class QAConfig:
self.INPUT_DIR = "Data_Export_Json"
self.OUTPUT_DIR = "Data_QA_Outputs"
# ========== 随机抽取配置 ==========
# 从final.json随机抽取的记录个数生成selected.json文件
self.SELECT_COUNT = 3000
# ========== 问题数量控制 ==========
# 每个数据项生成的基本问题数量(简单模式下)
self.BASIC_QUESTIONS_PER_ITEM = 1

226
merge_json_fast.py Normal file
View File

@@ -0,0 +1,226 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
优化版JSON文件合并脚本
根据字段英文名匹配逻辑模型表、物理模型表和元素治理模板表的数据
"""
import json
import os
from collections import defaultdict
from typing import Dict, List, Any
def load_json_file(file_path: str) -> List[Dict[str, Any]]:
"""加载JSON文件"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"[OK] 加载文件: {os.path.basename(file_path)} - {len(data)} 条记录")
return data
except Exception as e:
print(f"[ERROR] 加载文件失败 {file_path}: {e}")
return []
def build_index(records: List[Dict], field_name: str) -> Dict[str, List[Dict]]:
"""为记录列表建立索引,加速查找"""
index = defaultdict(list)
for record in records:
field_value = record.get(field_name)
if field_value:
index[field_value].append(record)
print(f"[INFO] 建立索引完成: {len(index)} 个唯一字段值")
return index
def merge_records_optimized(logical_index: Dict, physical_index: Dict, element_records: List[Dict]) -> List[Dict]:
"""
使用索引优化合并三个表的记录
"""
merged_data = []
processed_fields = set()
# 遍历元素治理表
print(f"\n[INFO] 开始合并数据...")
for i, element_record in enumerate(element_records):
if i % 5000 == 0:
print(f" 处理进度: {i}/{len(element_records)}")
field_english_name = element_record.get('字段英文名')
if not field_english_name or field_english_name in processed_fields:
continue
processed_fields.add(field_english_name)
# 创建合并记录
merged_record = {}
# 添加元素治理模板表的数据
for key, value in element_record.items():
if key != '表名':
merged_record[key] = value
# 查找逻辑模型表中的匹配记录
logical_matches = logical_index.get(field_english_name, [])
# 查找物理模型表中的匹配记录
physical_matches = physical_index.get(field_english_name, [])
# 添加逻辑模型表的数据(添加前缀避免冲突)
if logical_matches:
for logical_match in logical_matches:
for key, value in logical_match.items():
if key not in ['表名', '字段英文名']:
new_key = f"逻辑模型_{key}"
merged_record[new_key] = value
# 只有当有匹配数据时才添加表名信息
merged_record['逻辑模型表_表名'] = '远光数据架构逻辑模型表'
# 添加物理模型表的数据(添加前缀避免冲突)
if physical_matches:
for physical_match in physical_matches:
for key, value in physical_match.items():
if key not in ['表名', '字段英文名']:
new_key = f"物理模型_{key}"
merged_record[new_key] = value
# 只有当有匹配数据时才添加表名信息
merged_record['物理模型表_表名'] = '远光数据架构物理模型表'
# 添加元素治理表名(始终存在)
merged_record['元素治理表_表名'] = '远光数据架构元素治理模板表'
merged_data.append(merged_record)
print(f" 完成合并: {len(merged_data)} 条记录")
return merged_data
def add_unmatched_records_optimized(merged_data: List[Dict],
logical_index: Dict,
physical_index: Dict) -> List[Dict]:
"""
添加未匹配的记录
"""
print(f"\n[INFO] 处理未匹配的记录...")
# 获取所有已处理的字段英文名
processed_fields = {record.get('字段英文名') for record in merged_data if record.get('字段英文名')}
# 添加逻辑模型表中未匹配的记录
logical_unmatched = len(logical_index) - len([f for f in logical_index if f in processed_fields])
print(f" 逻辑模型表未匹配: {logical_unmatched}")
for field_name, logical_matches in logical_index.items():
if field_name not in processed_fields:
for logical_match in logical_matches:
merged_record = {'字段英文名': field_name}
for key, value in logical_match.items():
if key not in ['表名', '字段英文名']:
merged_record[f"逻辑模型_{key}"] = value
merged_record['逻辑模型表_表名'] = '远光数据架构逻辑模型表'
merged_record['物理模型表_表名'] = None
merged_record['元素治理表_表名'] = None
merged_data.append(merged_record)
# 添加物理模型表中未匹配的记录
physical_unmatched = len(physical_index) - len([f for f in physical_index if f in processed_fields])
print(f" 物理模型表未匹配: {physical_unmatched}")
for field_name, physical_matches in physical_index.items():
if field_name not in processed_fields:
# 检查是否已经添加过(通过逻辑模型表)
already_added = any(r.get('字段英文名') == field_name for r in merged_data)
if not already_added:
for physical_match in physical_matches:
merged_record = {'字段英文名': field_name}
for key, value in physical_match.items():
if key not in ['表名', '字段英文名']:
merged_record[f"物理模型_{key}"] = value
merged_record['逻辑模型表_表名'] = None
merged_record['物理模型表_表名'] = '远光数据架构物理模型表'
merged_record['元素治理表_表名'] = None
merged_data.append(merged_record)
return merged_data
def main():
"""主函数"""
print("="*60)
print("优化版JSON文件合并工具")
print("="*60)
# 文件路径
logical_json_path = "Data_Export_Json/远光数据架构逻辑模型表.json"
physical_json_path = "Data_Export_Json/远光数据架构物理模型表.json"
element_json_path = "Data_Export_Json/远光数据架构元素治理模板表.json"
output_path = "Data_Export_Json/final.json"
# 加载JSON文件
print("\n[INFO] 加载JSON文件...")
logical_records = load_json_file(logical_json_path)
physical_records = load_json_file(physical_json_path)
element_records = load_json_file(element_json_path)
if not (logical_records and physical_records and element_records):
print("\n[ERROR] 无法加载所有JSON文件")
return
# 建立索引
print(f"\n[INFO] 建立索引加速查找...")
logical_index = build_index(logical_records, '字段英文名')
physical_index = build_index(physical_records, '字段英文名')
# 合并数据(只处理元素治理表中存在的字段)
merged_data = merge_records_optimized(logical_index, physical_index, element_records)
# 不再添加未匹配的记录,因为用户只关心元素治理表中的字段
# 保存合并后的数据
try:
print(f"\n[INFO] 保存合并数据到 {output_path}...")
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(merged_data, f, ensure_ascii=False, indent=2)
file_size = os.path.getsize(output_path) / 1024 # KB
print(f"\n[OK] 合并完成!")
print(f" 输出文件: {output_path}")
print(f" 合并记录: {len(merged_data)}")
print(f" 文件大小: {file_size:.1f} KB")
# 显示统计信息
three_table_match = sum(1 for r in merged_data if r.get('元素治理表_表名') and r.get('逻辑模型表_表名') and r.get('物理模型表_表名'))
element_logical_match = sum(1 for r in merged_data if r.get('元素治理表_表名') and r.get('逻辑模型表_表名') and not r.get('物理模型表_表名'))
element_physical_match = sum(1 for r in merged_data if r.get('元素治理表_表名') and r.get('物理模型表_表名') and not r.get('逻辑模型表_表名'))
element_only_match = sum(1 for r in merged_data if r.get('元素治理表_表名') and not r.get('逻辑模型表_表名') and not r.get('物理模型表_表名'))
logical_only_count = sum(1 for r in merged_data if r.get('逻辑模型表_表名') and not r.get('元素治理表_表名'))
physical_only_count = sum(1 for r in merged_data if r.get('物理模型表_表名') and not r.get('元素治理表_表名'))
print(f"\n[INFO] 统计信息:")
print(f" 三表匹配: {three_table_match}")
print(f" 元素治理+逻辑模型: {element_logical_match}")
print(f" 元素治理+物理模型: {element_physical_match}")
print(f" 仅元素治理: {element_only_match}")
print(f" 仅逻辑模型: {logical_only_count}")
print(f" 仅物理模型: {physical_only_count}")
# 显示前3条记录的字段名
if merged_data:
print(f"\n[INFO] 合并记录示例:")
sample_record = merged_data[0]
print(f" 字段数量: {len(sample_record)}")
print(f" 字段名: {list(sample_record.keys())[:10]}...") # 只显示前10个字段
except Exception as e:
print(f"\n[ERROR] 保存文件失败: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()

View File

@@ -1,92 +1,20 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
QA生成器 - 整合
整合所有功能于一个文件,减少冗余
QA生成器 - 简化
基于selected.json文件生成问答对
只使用字段中文名、字段英文名、抽象中文名作为提问基础
"""
import json
import os
import random
from typing import List, Dict, Any
class QAConfig:
"""QA生成配置类"""
def __init__(self):
# 基础配置
self.RANDOM_SEED = 42
self.INPUT_DIR = "Data_Export_Json"
self.OUTPUT_DIR = "Data_QA_Outputs"
# 复杂程度控制 (1-5)
self.COMPLEXITY_LEVEL = 3
# 问题数量控制
self.BASIC_QUESTIONS_PER_ITEM = 1
self.MAX_QUESTIONS_PER_ITEM = 10
self.MULTI_COLUMN_RATIO = 0.3
# 输出控制
self.SHUFFLE_OUTPUT = True
self.GENERATE_REPORT = True
self.VERBOSE_LOG = True
# 数据文件配置
self.DATA_FILES = [
{"name": "元素治理模板", "file": "元素治理模板.json", "output": "元素治理模板_QA.json", "enabled": True},
{"name": "物理模型", "file": "物理模型.json", "output": "物理模型_QA.json", "enabled": True},
{"name": "逻辑模型", "file": "逻辑模型.json", "output": "逻辑模型_QA.json", "enabled": True}
]
# 初始化修饰语和连接词
self._init_templates()
def _init_templates(self):
"""初始化模板列表"""
if self.COMPLEXITY_LEVEL <= 2:
# 简单模式
self.QUESTION_PREFIXES = ["请告诉我", "查询", "请问"]
self.ANSWER_PREFIXES = ["根据表记录,该字段的", "查询结果显示,", "经查询,该字段的"]
self.ANSWER_SUFFIXES = ["", ""]
self.CONNECTORS = ["", ""]
self.SINGLE_TEMPLATES = 6 if self.COMPLEXITY_LEVEL == 2 else 3
self.MULTI_TEMPLATES = 1 if self.COMPLEXITY_LEVEL == 2 else 0
self.MULTI_RATIO = 0.1 if self.COMPLEXITY_LEVEL == 2 else 0.0
else:
# 普通/复杂模式
self.QUESTION_PREFIXES = ["请告诉我", "查询", "请问", "", "请解释", "请输出", "请列举", "请说明", "请查找", "请确认"]
self.ANSWER_PREFIXES = ["根据表记录,该字段的", "查询结果显示,", "经查询,该字段的", "根据数据库记录,", "在表中,此字段的", "查询结果:", "经系统查询,", "根据记录显示,", "在数据中,该字段的", "查询得知,该字段的"]
self.ANSWER_SUFFIXES = ["", ",请参考。", ",详情如上。", ",以上信息为准。", ",望知悉。", ",如需更多信息请联系。", ",希望能帮到您。", ",祝您工作顺利。", ",谢谢。", ""]
self.CONNECTORS = ["", "", "", "", ",还有", "以及"]
self.SINGLE_TEMPLATES = 12
self.MULTI_TEMPLATES = 5
self.MULTI_RATIO = self.MULTI_COLUMN_RATIO
def get_random_element(self, elements: List[str]) -> str:
"""从列表中随机获取一个元素"""
return random.choice(elements) if elements else ""
def update_config(self, **kwargs):
"""更新配置参数"""
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
if key == 'COMPLEXITY_LEVEL':
self._init_templates() # 重新初始化模板
def print_config(self):
"""打印当前配置"""
print(f"\n复杂程度等级: {self.COMPLEXITY_LEVEL}")
print(f"单列模板数: {self.SINGLE_TEMPLATES}")
print(f"多列模板数: {self.MULTI_TEMPLATES}")
print(f"多列占比: {self.MULTI_RATIO}")
print(f"输出目录: {self.OUTPUT_DIR}")
from config import QAConfig
class QAGenerator:
"""QA生成器 - 整合"""
"""QA生成器 - 简化"""
def __init__(self, config: QAConfig = None):
"""初始化生成器"""
@@ -94,244 +22,181 @@ class QAGenerator:
os.makedirs(self.config.OUTPUT_DIR, exist_ok=True)
random.seed(self.config.RANDOM_SEED)
# 问题模板前缀
self.QUESTION_PREFIXES = [
"请告诉我",
"查询",
"请问",
"请解释",
"请输出",
"请列举",
"请说明",
"请查找",
"请确认"
]
# 答句模板前缀
self.ANSWER_PREFIXES = [
"该字段的",
"查询结果显示,",
"经查询,该字段的",
"根据记录显示,",
"该数据的",
"查询结果:",
"经系统查询,",
"根据记录,",
"该值的"
]
# 答句模板后缀
self.ANSWER_SUFFIXES = [
"",
""
]
def get_random_element(self, elements: List[str]) -> str:
"""从列表中随机获取一个元素"""
return random.choice(elements) if elements else ""
def load_json(self, file_path: str) -> List[Dict]:
"""加载JSON文件"""
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
def generate_single_qa(self, item: Dict, template_count: int, data_type: str) -> List[Dict]:
"""生成单列QA - 整合了三种数据类型的模板"""
def generate_qa_for_item(self, item: Dict) -> List[Dict]:
"""为单个数据项生成问答对
基于字段中文名、字段英文名询问其他所有字段
"""
qa_pairs = []
answer_prefixes = self.config.ANSWER_PREFIXES
answer_suffixes = self.config.ANSWER_SUFFIXES
prefixes = self.config.QUESTION_PREFIXES
if data_type == "element":
# 元素治理模板模板
templates = []
table_name = item.get("表名", "元素治理模板")
# 获取两个核心字段
field_chinese_name = item.get('字段中文名', '')
field_english_name = item.get('字段英文名', '')
if item.get("业务领域名称") and item.get("数据元素中文名"):
templates.append((f"{table_name}中,业务领域「{item['业务领域名称']}」对应的数据元素中文名是什么?", f"该数据元素为「{item['数据元素中文名']}"))
if item.get("业务领域名称") and item.get("数据元素中文名"):
templates.append((f"{item['数据元素中文名']}」这个数据元素在{table_name}中属于哪个业务领域?", f"该数据元素属于「{item['业务领域名称']}"))
if item.get("数据元素中文名") and item.get("值类型"):
templates.append((f"查询{table_name}中,数据元素「{item['数据元素中文名']}」的值类型是什么?", f"值类型为「{item['值类型']}"))
if item.get("数据元素中文名") and item.get("总长度"):
templates.append((f"{table_name}里,「{item['数据元素中文名']}」的总长度设置是多少?", f"总长度为{item['总长度']}"))
if item.get("数据元素中文名") and item.get("类别"):
templates.append((f"请确认「{item['数据元素中文名']}」在{table_name}中属于哪个类别?", f"该数据元素属于「{item['类别']}」类别"))
if item.get("数据元素中文名") and item.get("数据元素英文名"):
templates.append((f"请查找{table_name}中「{item['数据元素中文名']}」对应的英文名是什么?", f"英文名为「{item['数据元素英文名']}"))
if item.get("数据元素中文名") and item.get("是否枚举"):
templates.append((f"{item['数据元素中文名']}」这个数据元素在{table_name}中是否枚举?", f"是否枚举为「{item['是否枚举']}"))
if item.get("数据元素中文名") and item.get("枚举数量"):
templates.append((f"请问在{table_name}中,「{item['数据元素中文名']}」的枚举数量是多少?", f"枚举数量为{item['枚举数量']}"))
if item.get("数据元素中文名") and item.get("小数位"):
templates.append((f"请说明{table_name}中「{item['数据元素中文名']}」的小数位设置?", f"小数位为{item['小数位']}"))
if item.get("数据元素中文名") and item.get("抽象元素中文名"):
templates.append((f"{table_name}里,「{item['数据元素中文名']}」的抽象元素中文名是什么?", f"抽象元素中文名为「{item['抽象元素中文名']}"))
if item.get("数据元素中文名") and item.get("说明"):
templates.append((f"请解释「{item['数据元素中文名']}」在{table_name}中的作用和含义", f"该数据元素的说明为「{item['说明']}"))
if item.get("数据元素中文名") and item.get("是否上线"):
templates.append((f"请问「{item['数据元素中文名']}」在{table_name}中是否已上线?", f"是否上线为「{item['是否上线']}"))
# 生成QA
for i, (question, answer) in enumerate(templates[:template_count]):
# 基于字段中文名提问
if field_chinese_name:
# 询问值类型
if item.get('值类型'):
question = f"字段中文名为'{field_chinese_name}'的值类型是什么?"
answer = f"值类型为「{item['值类型']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.config.get_random_element(answer_prefixes)}{answer}{self.config.get_random_element(answer_suffixes)}"
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
elif data_type == "physical":
# 物理模型模板
table_name = item.get("表名", "物理模型")
templates = []
if item.get("物理模型属性中文名") and item.get("值类型"):
templates.append((f"{table_name}中,「{item['物理模型属性中文名']}」的值类型是什么?", f"该属性的值类型为「{item['值类型']}"))
if item.get("物理模型属性中文名") and item.get("长度"):
templates.append((f"请问「{item['物理模型属性中文名']}」在{table_name}中的长度是多少?", f"该属性长度为{item['长度']}"))
if item.get("物理模型属性中文名") and item.get("小数位") is not None:
templates.append((f"请确认{table_name}中「{item['物理模型属性中文名']}」的小数位设置", f"该属性小数位为{item['小数位']}"))
if item.get("物理模型属性中文名") and item.get("关联数据元素"):
templates.append((f"{item['物理模型属性中文名']}」这个属性在{table_name}中关联哪个数据元素?", f"该属性关联的数据元素为「{item['关联数据元素']}"))
if item.get("物理模型属性中文名") and item.get("物理模型中文名"):
templates.append((f"请查找「{item['物理模型属性中文名']}」属于哪个物理模型?", f"该属性属于「{item['物理模型中文名']}"))
if item.get("物理模型属性中文名") and item.get("说明"):
templates.append((f"请说明「{item['物理模型属性中文名']}」在{table_name}中的作用和用途", f"该属性的说明为「{item['说明']}"))
if item.get("物理模型属性英文名") and item.get("物理模型属性中文名"):
templates.append((f"{table_name}中,属性「{item['物理模型属性英文名']}」的中文名是什么?", f"该属性的中文名为「{item['物理模型属性中文名']}"))
if item.get("物理模型中文名") and item.get("物理模型英文名"):
templates.append((f"{item['物理模型中文名']}」对应的物理模型英文名是什么?", f"该物理模型的英文名为「{item['物理模型英文名']}"))
if item.get("物理模型英文名") and item.get("物理模型中文名"):
templates.append((f"{table_name}中,物理模型「{item['物理模型英文名']}」的中文名是什么?", f"该物理模型的中文名为「{item['物理模型中文名']}"))
# 生成QA
for i, (question, answer) in enumerate(templates[:template_count]):
# 询问是否枚举
if item.get('是否枚举'):
question = f"字段中文名为'{field_chinese_name}'是否枚举?"
answer = f"是否枚举为「{item['是否枚举']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.config.get_random_element(answer_prefixes)}{answer}{self.config.get_random_element(answer_suffixes)}"
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
elif data_type == "logical":
# 逻辑模型模板
table_name = item.get("表名", "逻辑模型")
templates = []
if item.get("业务领域") and item.get("逻辑模型中文名"):
templates.append((f"{table_name}中,业务领域为「{item['业务领域']}」的逻辑模型中文名是什么?", f"该业务领域对应的逻辑模型中文名为「{item['逻辑模型中文名']}"))
if item.get("业务领域") and item.get("逻辑模型中文名"):
templates.append((f"{item['逻辑模型中文名']}」这个逻辑模型在{table_name}中属于哪个业务领域?", f"该逻辑模型属于「{item['业务领域']}"))
if item.get("字段英文名") and item.get("字段中文名"):
templates.append((f"请告诉我「{item['字段英文名']}」在{table_name}中的中文名是什么?", f"该字段的中文名为「{item['字段中文名']}"))
if item.get("字段中文名") and item.get("字段英文名"):
templates.append((f"{table_name}中,「{item['字段中文名']}」对应的英文名是什么?", f"该字段的英文名为「{item['字段英文名']}"))
if item.get("字段中文名") and item.get("值类型"):
templates.append((f"请问「{item['字段中文名']}」在{table_name}中的值类型是什么?", f"该字段的值类型为「{item['值类型']}"))
if item.get("字段中文名") and item.get("长度"):
templates.append((f"查询{table_name}中,「{item['字段中文名']}」的长度是多少?", f"该字段长度为{item['长度']}"))
if item.get("字段中文名") and item.get("小数位") is not None:
templates.append((f"请确认「{item['字段中文名']}」在{table_name}中的小数位设置", f"该字段小数位为{item['小数位']}"))
if item.get("逻辑模型中文名") and item.get("动态查询能力"):
templates.append((f"{item['逻辑模型中文名']}」的动态查询能力是什么级别?", f"该逻辑模型的动态查询能力为「{item['动态查询能力']}"))
if item.get("字段中文名") and item.get("关联数据元素英文名"):
templates.append((f"{table_name}中,「{item['字段中文名']}」关联的数据元素英文名是什么?", f"该字段关联的数据元素英文名为「{item['关联数据元素英文名']}"))
if item.get("逻辑模型中文名") and item.get("逻辑模型英文名"):
templates.append((f"请查找「{item['逻辑模型中文名']}」对应的逻辑模型英文名", f"该逻辑模型的英文名为「{item['逻辑模型英文名']}"))
# 生成QA
for i, (question, answer) in enumerate(templates[:template_count]):
# 询问枚举数量
if item.get('枚举数量') is not None:
question = f"字段中文名为'{field_chinese_name}'的枚举数量是多少?"
answer = f"枚举数量为{item['枚举数量']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.config.get_random_element(answer_prefixes)}{answer}{self.config.get_random_element(answer_suffixes)}"
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问总长度
if item.get('总长度') is not None:
question = f"字段中文名为'{field_chinese_name}'的总长度是多少?"
answer = f"总长度为{item['总长度']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问小数位
if item.get('小数位') is not None:
question = f"字段中文名为'{field_chinese_name}'的小数位是多少?"
answer = f"小数位为{item['小数位']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问字段英文名
if field_english_name:
question = f"字段中文名为'{field_chinese_name}'的字段英文名是什么?"
answer = f"字段英文名为「{field_english_name}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 基于字段英文名提问
if field_english_name:
# 询问值类型
if item.get('值类型'):
question = f"字段英文名为'{field_english_name}'的值类型是什么?"
answer = f"值类型为「{item['值类型']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问是否枚举
if item.get('是否枚举'):
question = f"字段英文名为'{field_english_name}'是否枚举?"
answer = f"是否枚举为「{item['是否枚举']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问总长度
if item.get('总长度') is not None:
question = f"字段英文名为'{field_english_name}'的总长度是多少?"
answer = f"总长度为{item['总长度']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问小数位
if item.get('小数位') is not None:
question = f"字段英文名为'{field_english_name}'的小数位是多少?"
answer = f"小数位为{item['小数位']}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
# 询问字段中文名
if field_chinese_name:
question = f"字段英文名为'{field_english_name}'的字段中文名是什么?"
answer = f"字段中文名为「{field_chinese_name}"
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.get_random_element(self.ANSWER_PREFIXES)}{answer}{self.get_random_element(self.ANSWER_SUFFIXES)}"
})
return qa_pairs
def generate_multi_qa(self, item: Dict, template_count: int, data_type: str) -> List[Dict]:
"""生成多列QA"""
qa_pairs = []
answer_prefixes = self.config.ANSWER_PREFIXES
answer_suffixes = self.config.ANSWER_SUFFIXES
connectors = self.config.CONNECTORS
if data_type == "element":
table_name = item.get("表名", "元素治理模板")
templates = []
if item.get("数据元素中文名") and item.get("值类型") and item.get("总长度"):
connector = self.config.get_random_element(connectors)
templates.append((
f"请列举{table_name}中「{item['数据元素中文名']}」的值类型和总长度",
f"该数据元素的{connector}值类型为「{item['值类型']}」,总长度为{item['总长度']}"
))
if item.get("数据元素中文名") and item.get("类别") and item.get("业务领域名称") and item.get("是否枚举"):
connector1 = self.config.get_random_element(connectors[:3])
connector2 = self.config.get_random_element(connectors[3:])
templates.append((
f"请输出「{item['数据元素中文名']}」在{table_name}中的类别、业务领域和是否枚举信息",
f"该数据元素的类别为「{item['类别']}」,{connector1}业务领域为「{item['业务领域名称']}」,{connector2}是否枚举为「{item['是否枚举']}"
))
if item.get("数据元素中文名") and item.get("值类型") and item.get("总长度") and item.get("小数位"):
connector = self.config.get_random_element(connectors)
templates.append((
f"{table_name}中,「{item['数据元素中文名']}」的值类型、长度和小数位分别是多少?",
f"该数据元素的值类型为「{item['值类型']}」,{connector}长度为{item['总长度']},小数位为{item['小数位']}"
))
if item.get("数据元素中文名") and item.get("数据元素英文名") and item.get("说明"):
connector = self.config.get_random_element(connectors)
templates.append((
f"请查找「{item['数据元素中文名']}」在{table_name}中的英文名和说明信息",
f"该数据元素的英文名为「{item['数据元素英文名']}」,{connector}说明为「{item['说明']}"
))
if item.get("数据元素中文名") and item.get("枚举数量") and item.get("元素取值范围\n(枚举类型名称)"):
connector = self.config.get_random_element(connectors)
range_value = item['元素取值范围\n(枚举类型名称)'] or ""
templates.append((
f"{table_name}中,「{item['数据元素中文名']}」的枚举数量和取值范围分别是什么?",
f"该数据元素的枚举数量为{item['枚举数量']}{connector}取值范围为「{range_value}"
))
# 生成QA
for i, (question, answer) in enumerate(templates[:template_count]):
qa_pairs.append({
"instruct": question,
"input": "",
"output": f"{self.config.get_random_element(answer_prefixes)}{answer}{self.config.get_random_element(answer_suffixes)}"
})
# 为物理模型和逻辑模型也添加类似的多列模板...
elif data_type == "physical":
table_name = item.get("表名", "物理模型")
if item.get("物理模型属性中文名") and item.get("值类型") and item.get("长度"):
connector = self.config.get_random_element(connectors)
qa_pairs.append({
"instruct": f"请列举「{item['物理模型属性中文名']}」在{table_name}中的值类型和长度",
"input": "",
"output": f"{self.config.get_random_element(answer_prefixes)}该属性的{connector}值类型为「{item['值类型']}」,长度为{item['长度']}{self.config.get_random_element(answer_suffixes)}"
})
elif data_type == "logical":
table_name = item.get("表名", "逻辑模型")
if item.get("字段中文名") and item.get("值类型") and item.get("长度"):
connector = self.config.get_random_element(connectors)
qa_pairs.append({
"instruct": f"请列举「{item['字段中文名']}」在{table_name}中的值类型和长度",
"input": "",
"output": f"{self.config.get_random_element(answer_prefixes)}该字段的{connector}值类型为「{item['值类型']}」,长度为{item['长度']}{self.config.get_random_element(answer_suffixes)}"
})
return qa_pairs
def generate_qa_for_data(self, data: List[Dict], data_type: str) -> List[Dict]:
"""为指定数据类型生成QA"""
def generate_qa_for_data(self, data: List[Dict]) -> List[Dict]:
"""为所有数据生成QA"""
all_qa = []
for item in data:
# 生成单列QA
single_qa = self.generate_single_qa(item, self.config.SINGLE_TEMPLATES, data_type)
all_qa.extend(single_qa)
# 根据概率生成多列QA
if random.random() < self.config.MULTI_RATIO:
multi_qa = self.generate_multi_qa(item, self.config.MULTI_TEMPLATES, data_type)
all_qa.extend(multi_qa)
qa_pairs = self.generate_qa_for_item(item)
all_qa.extend(qa_pairs)
return all_qa
@@ -347,237 +212,76 @@ class QAGenerator:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(qa_pairs, f, ensure_ascii=False, indent=2)
size_mb = os.path.getsize(output_path) / (1024 * 1024)
if self.config.VERBOSE_LOG:
print(f"[OK] 已生成: {output_path} ({len(qa_pairs)} 条问答对, {size_mb:.1f}MB)")
else:
print(f"[OK] 已生成: {output_path} (共 {len(qa_pairs)} 条问答对)")
size_kb = os.path.getsize(output_path) / 1024
print(f"[OK] 已生成: {output_path}")
print(f" {len(qa_pairs)} 条问答对, {size_kb:.1f} KB")
def merge_to_train(self, output_file: str = "train.json") -> Dict:
"""合并QA文件为train.json"""
all_qa_pairs = []
file_stats = {}
total_files = 0
# 遍历输出目录中的所有QA文件
for filename in os.listdir(self.config.OUTPUT_DIR):
if filename.endswith('.json') and not filename.startswith('QA生成报告') and filename != 'train_stats.json':
file_path = os.path.join(self.config.OUTPUT_DIR, filename)
try:
with open(file_path, 'r', encoding='utf-8') as f:
qa_data = json.load(f)
if isinstance(qa_data, list) and all(isinstance(item, dict) and 'instruct' in item and 'output' in item for item in qa_data):
all_qa_pairs.extend(qa_data)
file_stats[filename] = len(qa_data)
total_files += 1
if self.config.VERBOSE_LOG:
print(f"[OK] 已合并: {filename} ({len(qa_data)} 条问答对)")
except Exception as e:
print(f"[ERROR] 读取文件失败 {filename}: {str(e)}")
# 打乱顺序
if self.config.SHUFFLE_OUTPUT and all_qa_pairs:
random.shuffle(all_qa_pairs)
if self.config.VERBOSE_LOG:
print(f"\n[INFO] 已打乱 {len(all_qa_pairs)} 条问答对顺序")
# 保存train.json
train_path = os.path.join(self.config.OUTPUT_DIR, output_file)
with open(train_path, 'w', encoding='utf-8') as f:
json.dump(all_qa_pairs, f, ensure_ascii=False, indent=2)
file_size_mb = os.path.getsize(train_path) / (1024 * 1024)
# 生成统计
stats = {
"合并时间": "2025-12-18",
"处理文件数": total_files,
"各文件问答对数量": file_stats,
"总问答对数量": len(all_qa_pairs),
"输出文件大小": f"{file_size_mb:.2f} MB",
"打乱顺序": self.config.SHUFFLE_OUTPUT
}
# 保存统计信息
stats_file = os.path.join(self.config.OUTPUT_DIR, "train_stats.json")
with open(stats_file, 'w', encoding='utf-8') as f:
json.dump(stats, f, ensure_ascii=False, indent=2)
print(f"\n[SUCCESS] 合并完成!")
print(f"[OUTPUT] {train_path}")
print(f"[TOTAL] 总计: {len(all_qa_pairs):,} 条问答对")
print(f"[SIZE] 文件大小: {file_size_mb:.2f} MB")
return stats
def generate_report(self, qa_counts: Dict[str, int]):
def generate_report(self, total_qa_count: int):
"""生成生成报告"""
if not self.config.GENERATE_REPORT:
return
report = {
"生成时间": "2025-12-18",
"版本": "整合",
"配置信息": {
"复杂程度等级": self.config.COMPLEXITY_LEVEL,
"随机种子": self.config.RANDOM_SEED,
"多列查询占比": self.config.MULTI_COLUMN_RATIO,
"打乱输出": self.config.SHUFFLE_OUTPUT
},
"总文件数": len(qa_counts),
"各文件问答对数量": qa_counts,
"总计问答对数量": sum(qa_counts.values()),
"说明": "所有问答对均基于原始JSON数据生成未进行任何编撰或修改"
"生成时间": "2025-12-31",
"版本": "简化",
"输入文件": "selected.json",
"输出目录": self.config.OUTPUT_DIR,
"随机种子": self.config.RANDOM_SEED,
"总问答对数量": total_qa_count,
"说明": "基于字段中文名、字段英文名、抽象中文名询问其他所有字段"
}
report_path = os.path.join(self.config.OUTPUT_DIR, "QA生成报告.json")
with open(report_path, 'w', encoding='utf-8') as f:
json.dump(report, f, ensure_ascii=False, indent=2)
if self.config.VERBOSE_LOG:
print(f"[OK] 已生成: {report_path}")
print(f"[OK] 已生成: {report_path}")
def process_all(self):
# 清理输出目录中的旧文件
print("[INFO] 清理输出目录中的旧文件...")
if os.path.exists(self.config.OUTPUT_DIR):
for filename in os.listdir(self.config.OUTPUT_DIR):
file_path = os.path.join(self.config.OUTPUT_DIR, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
if self.config.VERBOSE_LOG:
print(f" [DEL] 已删除: {filename}")
except Exception as e:
print(f" [WARN] 删除文件失败 {filename}: {str(e)}")
def process_selected_json(self):
"""处理selected.json文件"""
input_file = os.path.join(self.config.INPUT_DIR, "selected.json")
"""处理所有数据文件"""
qa_counts = {}
if not os.path.exists(input_file):
print(f"[ERROR] 文件不存在: {input_file}")
return
for file_info in self.config.DATA_FILES:
if not file_info["enabled"]:
if self.config.VERBOSE_LOG:
print(f"[SKIP] 已跳过: {file_info['name']}")
continue
print("="*60)
print("QA生成器 - 简化版")
print("="*60)
print(f"\n[INFO] 加载数据: {input_file}")
if self.config.VERBOSE_LOG:
print(f"\n[INFO] 正在处理: {file_info['name']}.json")
else:
print(f"[INFO] 正在处理: {file_info['name']}")
try:
data = self.load_json(input_file)
print(f" 数据记录: {len(data)}")
input_file = os.path.join(self.config.INPUT_DIR, file_info["file"])
print(f"\n[INFO] 生成问答对...")
qa_pairs = self.generate_qa_for_data(data)
print(f" 生成数量: {len(qa_pairs)}")
if not os.path.exists(input_file):
print(f"[WARNING] 文件不存在: {input_file}")
continue
print(f"\n[INFO] 打乱顺序...")
qa_pairs = self.shuffle_qa_pairs(qa_pairs)
try:
data = self.load_json(input_file)
print(f"\n[INFO] 保存文件...")
self.save_qa(qa_pairs, "selected_QA.json")
# 根据文件名确定数据类型
if "元素治理" in file_info["name"]:
data_type = "element"
elif "物理模型" in file_info["name"]:
data_type = "physical"
elif "逻辑模型" in file_info["name"]:
data_type = "logical"
else:
print(f"[WARNING] 未知的文件类型: {file_info['name']}")
continue
print(f"\n[INFO] 生成报告...")
self.generate_report(len(qa_pairs))
qa_pairs = self.generate_qa_for_data(data, data_type)
qa_pairs = self.shuffle_qa_pairs(qa_pairs)
self.save_qa(qa_pairs, file_info["output"])
qa_counts[file_info["output"]] = len(qa_pairs)
except Exception as e:
print(f"[ERROR] 处理文件 {file_info['name']} 时出错: {str(e)}")
# 生成报告
if self.config.GENERATE_REPORT:
if self.config.VERBOSE_LOG:
print("\n[INFO] 正在生成: 生成报告")
else:
print("\n[INFO] 正在生成: 生成报告")
self.generate_report(qa_counts)
if self.config.VERBOSE_LOG:
print(f"\n[DONE] 所有文件处理完成!")
print(f"\n[DONE] 处理完成!")
print(f"[OUT] 输出目录: {self.config.OUTPUT_DIR}")
print(f"[TOTAL] 总计生成: {sum(qa_counts.values())} 条问答对")
else:
print("\n[DONE] 所有文件处理完成!")
print(f"[TOTAL] 总计生成: {len(qa_pairs)} 条问答对")
# 预设配置
SIMPLE_CONFIG = QAConfig()
SIMPLE_CONFIG.COMPLEXITY_LEVEL = 1
SIMPLE_CONFIG._init_templates()
NORMAL_CONFIG = QAConfig()
NORMAL_CONFIG.COMPLEXITY_LEVEL = 3
NORMAL_CONFIG._init_templates()
COMPLEX_CONFIG = QAConfig()
COMPLEX_CONFIG.COMPLEXITY_LEVEL = 5
COMPLEX_CONFIG._init_templates()
except Exception as e:
print(f"[ERROR] 处理文件时出错: {str(e)}")
import traceback
traceback.print_exc()
def main():
"""主函数 - 交互式运行"""
print("="*60)
print("QA生成器 - 整合版")
print("="*60)
print("\n可用的配置预设:")
print("1. SIMPLE_CONFIG - 简单模式 (复杂程度=1)")
print("2. NORMAL_CONFIG - 普通模式 (复杂程度=3)")
print("3. COMPLEX_CONFIG - 复杂模式 (复杂程度=5)")
print("4. 自定义配置")
choice = input("\n请选择配置 (1-4): ").strip()
if choice == "1":
config = SIMPLE_CONFIG
print("\n✓ 已选择: 简单模式")
elif choice == "2":
config = NORMAL_CONFIG
print("\n✓ 已选择: 普通模式")
elif choice == "3":
config = COMPLEX_CONFIG
print("\n✓ 已选择: 复杂模式")
elif choice == "4":
print("\n自定义配置:")
config = QAConfig()
complexity = input(f"复杂程度等级 (1-5, 当前:{config.COMPLEXITY_LEVEL}): ").strip()
if complexity:
config.COMPLEXITY_LEVEL = int(complexity)
config._init_templates()
multi_ratio = input(f"多列查询占比 0.0-1.0 (当前:{config.MULTI_COLUMN_RATIO}): ").strip()
if multi_ratio:
config.MULTI_COLUMN_RATIO = float(multi_ratio)
config._init_templates()
print("\n✓ 已应用自定义配置")
else:
print("\n无效选择,使用默认配置")
config = NORMAL_CONFIG
# 显示配置信息
config.print_config()
"""主函数"""
# 使用默认配置
config = QAConfig()
# 创建生成器并处理
generator = QAGenerator(config)
generator.process_all()
# 询问是否合并为train.json
merge_choice = input("\n是否合并为train.json? (y/n): ").strip().lower()
if merge_choice == 'y':
generator.merge_to_train()
generator.process_selected_json()
if __name__ == "__main__":

120
random_select.py Normal file
View File

@@ -0,0 +1,120 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
随机抽取脚本
从final.json中随机抽取指定数量的记录生成select_N.json文件
"""
import json
import random
import os
from typing import List, Dict, Any
from config import QAConfig
def load_json_file(file_path: str) -> List[Dict[str, Any]]:
"""加载JSON文件"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"[OK] 加载文件: {os.path.basename(file_path)} - {len(data)} 条记录")
return data
except Exception as e:
print(f"[ERROR] 加载文件失败 {file_path}: {e}")
return []
def random_select(records: List[Dict[str, Any]], count: int, random_seed: int) -> List[Dict[str, Any]]:
"""
随机抽取记录
Args:
records: 记录列表
count: 要抽取的数量
random_seed: 随机种子
Returns:
抽取的记录列表
"""
# 设置随机种子
random.seed(random_seed)
# 如果抽取数量大于等于总数,直接返回所有记录
if count >= len(records):
print(f"[WARN] 抽取数量 ({count}) 大于等于总记录数 ({len(records)}),返回所有记录")
return records
# 随机抽取
selected = random.sample(records, count)
print(f"[OK] 从 {len(records)} 条记录中随机抽取 {count}")
return selected
def main():
"""主函数"""
print("="*60)
print("随机抽取工具")
print("="*60)
# 加载配置
config = QAConfig()
print(f"\n[INFO] 加载配置:")
print(f" 随机种子: {config.RANDOM_SEED}")
print(f" 抽取数量: {config.SELECT_COUNT}")
# 文件路径
input_file = os.path.join(config.INPUT_DIR, "final.json")
output_file = os.path.join(config.INPUT_DIR, "selected.json")
# 检查输入文件是否存在
if not os.path.exists(input_file):
print(f"\n[ERROR] 输入文件不存在: {input_file}")
return
# 加载数据
print(f"\n[INFO] 加载数据...")
records = load_json_file(input_file)
if not records:
print(f"\n[ERROR] 无法加载数据或数据为空")
return
# 随机抽取
print(f"\n[INFO] 执行随机抽取...")
selected_records = random_select(records, config.SELECT_COUNT, config.RANDOM_SEED)
# 保存结果
try:
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(selected_records, f, ensure_ascii=False, indent=2)
file_size = os.path.getsize(output_file) / 1024 # KB
print(f"\n[OK] 抽取完成!")
print(f" 输出文件: {output_file}")
print(f" 记录数量: {len(selected_records)}")
print(f" 文件大小: {file_size:.1f} KB")
# 显示前3条记录的字段名
if selected_records:
print(f"\n[INFO] 抽取记录示例:")
sample = selected_records[0]
print(f" 字段数量: {len(sample)}")
print(f" 字段名: {list(sample.keys())[:10]}...")
# 显示统计信息
three_table_match = sum(1 for r in selected_records if '元素治理表_表名' in r and '逻辑模型表_表名' in r and '物理模型表_表名' in r)
element_logical_match = sum(1 for r in selected_records if '元素治理表_表名' in r and '逻辑模型表_表名' in r and '物理模型表_表名' not in r)
element_physical_match = sum(1 for r in selected_records if '元素治理表_表名' in r and '物理模型表_表名' in r and '逻辑模型表_表名' not in r)
element_only_match = sum(1 for r in selected_records if '元素治理表_表名' in r and '逻辑模型表_表名' not in r and '物理模型表_表名' not in r)
print(f"\n[INFO] 抽取记录统计:")
print(f" 三表匹配: {three_table_match}")
print(f" 元素治理+逻辑模型: {element_logical_match}")
print(f" 元素治理+物理模型: {element_physical_match}")
print(f" 仅元素治理: {element_only_match}")
except Exception as e:
print(f"\n[ERROR] 保存文件失败: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()